729 research outputs found

    Loci Controlling Resistance to High Plains Virus and Wheat Streak Mosaic Virus in a B73 × Mo17 Population of Maize

    Get PDF
    High Plains disease has the potential to cause significant yield loss in susceptible corn (Zea mays L.) and wheat (Triticum aestivum L.) genotypes, especially in the central and western USA. The primary causal agent, High Plains virus (HPV), is vectored by wheat curl mite (WCM; Aceria tossicheila Keifer), which is also the vector of wheat streak mosaic virus (WSMV). In general, the two diseases occur together as a mixed infection in the field. The objective of this research was to characterize the inheritance of HPV and WSMV resistance using B73 (resistant to HPV and WSMV) × Mo17 (moderately susceptible to HPV and WSMV) recombinant inbred lines. A population of 129 recombinant inbred lines scored for 167 molecular markers was used to evaluate resistance to WSMV and to a mixed infection of WSMV and HPV. Loci conferring resistance to systemic movement of WSMV in plants mapped to chromosomes 3, 6, and 10, consistent with the map position of wsm2, wsm1, and wsm3, respectively. Major genes for resistance to systemic spread of HPV in doubly infected plants mapped to chromosomes 3 and 6, coincident or tightly linked with the WSMV resistance loci. Analysis of doubly infected plants revealed that chromosome 6 had a major effect on HPV resistance, consistent with our previous analysis of B73 × W64A and B73 × Wf9 populations. Quantitative trait loci (QTL) affecting resistance to localized symptom development mapped to chromosomes 4 (umc66), 5 (bnl5.40), and 6 (umc85), and accounted for 24% of the phenotypic variation. Localized symptoms may reflect the amount of mite feeding or the extent of virus spread at the point of infection. Identification of cosegregating markers may facilitate selection for HPV and WSMV resistance in corn breeding programs

    Ultra-high-resolution 3D imaging of atherosclerosis in mice with synchrotron differential phase contrast: a proof of concept study.

    Get PDF
    The goal of this study was to investigate the performance of 3D synchrotron differential phase contrast (DPC) imaging for the visualization of both macroscopic and microscopic aspects of atherosclerosis in the mouse vasculature ex vivo. The hearts and aortas of 2 atherosclerotic and 2 wild-type control mice were scanned with DPC imaging with an isotropic resolution of 15 μm. The coronary artery vessel walls were segmented in the DPC datasets to assess their thickness, and histological staining was performed at the level of atherosclerotic plaques. The DPC imaging allowed for the visualization of complex structures such as the coronary arteries and their branches, the thin fibrous cap of atherosclerotic plaques as well as the chordae tendineae. The coronary vessel wall thickness ranged from 37.4 ± 5.6 μm in proximal coronary arteries to 13.6 ± 3.3 μm in distal branches. No consistent differences in coronary vessel wall thickness were detected between the wild-type and atherosclerotic hearts in this proof-of-concept study, although the standard deviation in the atherosclerotic mice was higher in most segments, consistent with the observation of occasional focal vessel wall thickening. Overall, DPC imaging of the cardiovascular system of the mice allowed for a simultaneous detailed 3D morphological assessment of both large structures and microscopic details

    Locus coeruleus to basolateral amygdala noradrenergic projections promote anxiety-like behavior

    Get PDF
    Increased tonic activity of locus coeruleus noradrenergic (LC-NE) neurons induces anxiety-like and aversive behavior. While some information is known about the afferent circuitry that endogenously drives this neural activity and behavior, the downstream receptors and anatomical projections that mediate these acute risk aversive behavioral states via the LC-NE system remain unresolved. Here we use a combination of retrograde tracing, fast-scan cyclic voltammetry, electrophysiology, and in vivo optogenetics with localized pharmacology to identify neural substrates downstream of increased tonic LC-NE activity in mice. We demonstrate that photostimulation of LC-NE fibers in the BLA evokes norepinephrine release in the basolateral amygdala (BLA), alters BLA neuronal activity, conditions aversion, and increases anxiety-like behavior. Additionally, we report that β-adrenergic receptors mediate the anxiety-like phenotype of increased NE release in the BLA. These studies begin to illustrate how the complex efferent system of the LC-NE system selectively mediates behavior through distinct receptor and projection-selective mechanisms

    Cytotoxic drug sensitivity of Epstein-Barr virus transformed lymphoblastoid B-cells.

    Get PDF
    BACKGROUND: Epstein-Barr virus (EBV) is the causative agent of immunosuppression associated lymphoproliferations such as post-transplant lymphoproliferative disorder (PTLD), AIDS related immunoblastic lymphomas (ARL) and immunoblastic lymphomas in X-linked lymphoproliferative syndrome (XLP). The reported overall mortality for PTLD often exceeds 50%. Reducing the immunosuppression in recipients of solid organ transplants (SOT) or using highly active antiretroviral therapy in AIDS patients leads to complete remission in 23-50% of the PTLD/ARL cases but will not suffice for recipients of bone marrow grafts. An additional therapeutic alternative is the treatment with anti-CD20 antibodies (Rituximab) or EBV-specific cytotoxic T-cells. Chemotherapy is used for the non-responding cases only as the second or third line of treatment. The most frequently used chemotherapy regimens originate from the non-Hodgkin lymphoma protocols and there are no cytotoxic drugs that have been specifically selected against EBV induced lymphoproliferative disorders. METHODS: As lymphoblastoid cell lines (LCLs) are well established in vitro models for PTLD, we have assessed 17 LCLs for cytotoxic drug sensitivity. After three days of incubation, live and dead cells were differentially stained using fluorescent dyes. The precise numbers of live and dead cells were determined using a custom designed automated laser confocal fluorescent microscope. RESULTS: Independently of their origin, LCLs showed very similar drug sensitivity patterns against 29 frequently used cytostatic drugs. LCLs were highly sensitive for vincristine, methotrexate, epirubicin and paclitaxel. CONCLUSION: Our data shows that the inclusion of epirubicin and paclitaxel into chemotherapy protocols against PTLD may be justified

    Fetal cardiac cine magnetic resonance imaging in utero.

    Get PDF
    Fast magnetic resonance imaging (MRI) led to the emergence of 'cine MRI' techniques, which enable the visualization of the beating heart and the assessment of cardiac morphology and dynamics. However, established cine MRI methods are not suitable for fetal heart imaging in utero, where anatomical structures are considerably smaller and recording an electrocardiogram signal for synchronizing MRI data acquisition is difficult. Here we present a framework to overcome these challenges. We use methods for image acquisition and reconstruction that robustly produce images with sufficient spatial and temporal resolution to detect the heart contractions of the fetus, enabling a retrospective gating of the images and thus the generation of images of the beating heart. To underline the potential of our approach, we acquired in utero images in six pregnant patients and compared these with their echocardiograms. We found good agreement in terms of diameter and area measurements, and low inter- and intra- observer variability. These results establish MRI as a reliable modality for fetal cardiac imaging, with a substantial potential for prenatal evaluation of congenital heart defects

    The Inhibitory Circuit Architecture of the Lateral Hypothalamus Orchestrates Feeding

    Get PDF
    The growing prevalence of overeating disorders is a key contributor to the worldwide obesity epidemic. Dysfunction of particular neural circuits may trigger deviations from adaptive feeding behaviors. The lateral hypothalamus (LH) is a crucial neural substrate for motivated behavior including feeding, but the precise functional neurocircuitry that controls LH neuronal activity to engage feeding has not been defined. We observed that inhibitory synaptic inputs from the extended amygdala preferentially innervate and suppress the activity of LH glutamatergic neurons to control food intake. These findings help explain how dysregulated activity at a number of unique nodes can result in a cascading failure within a defined brain network to produce maladaptive feeding
    corecore